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Abstract

Context In human-dominated landscapes, habitat

fragmentation and barriers to movement can interrupt

gene flow. While often considered at a local extent,

regional analyses are also needed to reveal broader

landscape-mediated population processes.

Objectives To explore the relationship between

patterns of gene flow and fragmentation resulting

from urbanization across southern California, we used

the bobcat as an indicator species. We assembled data

for a landscape level genetic analysis across southern

California from both archived and new samples,

including two northern Californian populations for

comparison, to identify local and regional areas

affected by isolation.

Methods Our regional analyses focused on a dataset

of 19 microsatellite loci for 118 individuals and a

dataset of 422 individuals genotyped at 11 loci. We

examined population genetic structure and examined

how pairwise genetic distance of all population

clusters aligned with geographic distance. We

employed a landscape genetic analysis based on

resistance to determine which features of the
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landscape likely play a role in determining the patterns

of genetic structure we observed.

Results Study populations generally exhibited a

pattern of isolation by distance and localized areas

of genetic isolation. The landscape genetic analysis

suggested that, in southern California, these patterns

are driven by overall landscape permeability.

Conclusions Although local studies are key to

examining the effects of urbanization and habitat

fragmentation on populations, we demonstrate the

importance of combining local and regional analyses

for wide-ranging species to understand and maintain

connectivity at local scales, while also improving and

establishing sustainable linkages to habitats at the

regional scale.

Keywords Landscape connectivity � Landscape
genetics � Habitat fragmentation � Isolation by

resistance � Microsatellites � Lynx rufus

Introduction

Landscape connectivity is the degree to which the

features of a landscape facilitate or impede movement

of organisms among resource patches (Taylor et al.

1993). In human-dominated landscapes, barriers to

movement can interrupt gene flow, as demonstrated in

multiple taxa (Vandergast et al. 2009; Delaney et al.

2010; Ernest et al. 2014; Barr et al. 2015; Stillfried

et al. 2017). This fragmentation can reduce functional

connectivity by limiting the movement of organisms

among habitat patches, sometimes causing loss of

biodiversity in patches isolated from source popula-

tions (Soulé et al. 1992; Taylor et al. 1993; Tischen-

dorf and Fahrig 2000; Ruell et al. 2012).When patches

of suitable habitat become isolated, affected popula-

tions can suffer from genetic drift, inbreeding, loss of

genetic diversity, and potential extirpation (Brown and

Kodric-Brown 1977; Allendorf 1986; Saccheri et al.

1998; Frankham 2005; Delaney et al. 2010). Urban-

ization and roadways, in particular, are primary factors

causing fragmentation and thereby population isola-

tion, challenging population viability (Riley et al.

2006; Delaney et al. 2010; Haddad et al. 2015).

Although the consequences of loss of connectivity

are typically described at a local extent, i.e., at the

preserve, city, or county level, regional analyses can

also be useful to identify pinch points and areas of

management priority, particularly for wide-ranging

species (Noss 1983; Turner 1989). Regional monitor-

ing of extirpation or colonization can provide an

understanding of important metapopulation dynamics,

which can reveal the impacts of habitat fragmentation

and inform assessments of landscape connectivity for

wildlife populations (Noss 1983; Verboom et al.

1991). While many conservation efforts seek to

maintain species diversity within local areas

(MacArthur 1965; Crooks et al. 2004), the need to

protect and create interconnected habitat patches,

facilitating movement despite anthropogenic influ-

ences, is recognized as key to establishing viable

ecological networks at the regional scale (Ng et al.

2004; Tammeleht et al. 2010; Joshi et al. 2013).

One approach to evaluate the impacts of frag-

mented landscapes on wildlife populations is to

examine population genetics and gene flow. Main-

taining gene flow is a critical component of metapop-

ulation dynamics and persistence of populations

threatened by habitat fragmentation (Ernest et al.

2003; Keller and Largiadèr 2003; Epps et al. 2018).

Genetic analyses can reveal if a population is isolated,

inbred, or if animals have dispersed to or from isolated

populations (Tischendorf and Fahrig 2000; Frankham

2005; Ruell et al. 2012). Consequently, genetic data

can be used to determine whether habitat fragmenta-

tion resulting from urban development is limiting

functional connectivity (Frankham 2005). Although

next generation genetic markers and analyses, i.e.,

single nucleotide polymorphisms (SNPs) and whole

genome sequencing, are robust approaches to charac-

terizing population structure, many large-scale popu-

lation analyses still rely on markers such as

microsatellites to leverage archived and existing data

(Ferchaud et al. 2018; Hunter et al. 2018).

Genetic analyses to assess the impacts of fragmen-

tation, and conversely landscape connectivity, often
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employ focal species (Lambeck 1997; Crooks 2002).

Because of their ability to disperse long distances

(Knick and Bailey 1986) and their capacity to use

habitat near urban areas, bobcats (Lynx rufus) have

been used as a focal species to assess connectivity,

particularly in southern California, where wildlands

with suitable bobcat habitat abut large metropolitan

areas in the U.S. (Crooks 2002; Ordeñana et al. 2010;

Ruell et al. 2012; Lee et al. 2012; Poessel et al. 2014).

As habitat generalists in a biodiversity hotspot,

bobcats can persist in a multitude of habitats in

southern California. However, bobcat habitat has been

increasingly fragmented with urban, agricultural,

military, and road development (Hunter et al. 2003;

Riley et al. 2006; Ruell et al. 2009, 2012; Burdett et al.

2010; Poessel et al. 2014; Serieys et al. 2015b). Prior

research has documented that bobcat populations are

negatively affected by barriers to movement which

reduce gene flow within areas of southern California,

despite their ability to persist within small habitat

fragments (Riley et al. 2006; Lee et al. 2012; Serieys

et al. 2015b). Southern California exhibits a gradient

of urbanization from north to south, with the highest

density of development in the Los Angeles metropoli-

tan area which declines as one moves south into the

less-urbanized San Diego County, where over 40% of

the land area is in conservation status (Zoutendyk et al.

2013). There is also a west to east gradient of

development which ranges from the more densely

populated areas along the coast in the west to the more

intact and preserved areas in the east. Although

bobcats are widespread throughout this region, they

often lack the ability to disperse among isolated

populations which may lead to bottlenecks and lower

genetic diversity, similar to the deleterious effects

seen in genetically depauperate mountain lion (Puma

concolor) populations in the region (Riley et al. 2014;

Ernest et al. 2014; Gustafson et al. 2019).

To examine landscape connectivity and associated

landscape features across southern California, we

combined bobcat genetic data collected from three

research efforts in the region, as well as data from two

studies from northern California for comparison

(Riley et al. 2006; Ruell et al. 2012; Lee et al. 2012;

Serieys et al. 2015b). By compiling data frommultiple

studies, our analysis evaluates functional connectivity

in coastal southern California identifying existing

patterns of bobcat population structure as well as the

landscape features that have led to observed

differentiation. This comprehensive landscape genetic

analysis provides insight into regional dispersal and

local movement patterns of a wide-ranging species

and the degree of connectivity across a gradient of

urbanization and habitat fragmentation in the coastal

southern California region.

Methods

We compiled a regional genetic dataset collected from

1992–2017, combining archived microsatellite data

from three coastal southern California regions as well

as from two northern California areas for comparison.

In coastal southern California, data were combined

from (Fig. 1): Ventura and Los Angeles Counties

(LA) from 1996–2015 (Riley et al. 2006; Serieys et al.

2015b; Sleater-Squires 2016), Orange County (OC)

from 2002–2009 (Lyren et al. 2006; Ruell et al. 2009;

Lee et al. 2012), and San Diego (SD) from 2006–2012

(unpublished data). The two northern California

comparison groups were from Golden Gate National

Recreation Area (GG) from 1992–1995 (Riley et al.

2004; Riley 2006), and a current study in San Jose (SJ)

with bobcats captured in 2017 (Serieys et al. unpub-

lished data). We also included more recently collected

samples from SD (2011–2016) and OC (2010–2015),

increasing the sample size for those two areas.

Study areas and sample compilation

Archived microsatellite data from a total of 596

bobcats were collected from LA (n = 397), OC

(n = 125), and SD (n = 74) from previously published

studies conducted between 1996–2015 (Lyren et al.

2006; Riley et al. 2006; Ruell et al. 2009; Lee et al.

2012; Serieys et al. 2015b; Sleater-Squires 2016). To

this sample, we added 19 additional samples from OC

and 13 from SD. We also included archived data from

GG (n = 13) and new samples from SJ (n = 17) for a

total of 658. In each of the study areas, samples of

blood, tissue, buccal swabs, or scat were obtained

through live capture and opportunistic carcass and scat

collection. Because the temporal scale of the data

spanned multiple bobcat generations, we removed

individuals that represented known events that influ-

enced genetic diversity, i.e., the mange outbreak in LA

in 2002–2003 (Serieys et al. 2015a) in a portion of the

analyses (described below in ‘‘Population Structure
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and Relationship Analysis’’ subsection) to explore the

influence on our results both with and without these

individuals.

The LA study site is centered around the Santa

Monica Mountains National Recreation Area

(SMMNRA; 623.6 km2), which is influenced by two

heavily trafficked, eight-lane and larger freeways,

US101 and Interstate (I)-405, as well as one smaller

but busy six-lane State Route (SR)-23 (Riley et al.

2006; Serieys et al. 2015b). Although SMMNRA itself

is a large tract of relatively undisturbed habitat, much

of the surrounding area is commercial and residential

developments. The OC study site, situated between

LA and SD along the southern California coast, is also

constrained by development and roadways with the

highest intensity of isolation along the coast in the San

Joaquin Hills west of I-5 and I-405 (Lee et al. 2012).

OC’s fragmentation by major roadways has been more

recent than that of LA; the LA freeways have been a

barrier for approximately sixty to seventy years

(US101 completed in 1949 and Interstate (I)-405 in

1962), in contrast to OC where only one freeway (I-5)

has existed for that long (completed 1958; Koza-

kiewicz et al. 2020). The southernmost study site was

SD where samples were collected on Marine Corps

Base Camp Pendleton, a large expanse of natural

habitat north of the SD metropolitan area, Los

Peñasquitos Canyon, an urban canyon in central

coastal SD, portions of the Cleveland National forest

in central SD near the town of Ramona, CA, and east in

the San Felipe Valley Wildlife Area at the western

edge of the Anza Borrego desert. All sampled bobcats

from GG were captured in the Olema Valley area of

Marin County (Riley 2006). Samples from SJ were

collected from individuals captured in the Coyote

Valley in Santa Clara County, an area characterized by

a mixed of natural and altered lands, including orchard

agricultural fields (Serieys et al. unpublished data).

Fig. 1 Map of study areas denoted by black stars with major roadways and city names for context. In northern California a GG (Riley

2006) and SJ, and in southern California b LA (Riley et al. 2006; Serieys et al. 2015a, b), OC (Lee et al. 2012), and SD
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Validation and data preparation

A challenge when analyzing microsatellites compiled

from various sources is the need for an adequate

number of common microsatellite loci among studies

in order to have adequate resolution to assess genetic

variability (Moran et al. 2006). Additionally, different

datasets differ in their absolute sizing of microsatellite

alleles (Moran et al. 2006; Ellis et al. 2011). Because

microsatellite size estimates, and thus allele designa-

tion, can only be compared when prepared by the same

protocol and measured by the same instrument, we

conducted a validation analysis on a subsample of the

data to standardize genotypes across the labs in which

the samples were originally processed (de Valk et al.

2009).

The validation subsample was selected such that all

alleles from the original data were represented

(excluding rare alleles\ 5%) and allele frequencies

of the subsamples were similar to the full datasets from

each region (within 6%). The validation analysis

(n = 61, 20 each for LA and OC, with 21 for SD) was

run at the University of California, Los Angeles

(UCLA) in 2017 using 19 microsatellite loci

(Table S1). In order to reduce variation among

laboratories, DNA from all 61 validation individuals

was freshly extracted from tissue and blood using

QIAGEN DNeasy Blood and Tissue kits (QIAGEN,

Valencia, CA, USA) according to the manufacturer’s

instructions.

All microsatellite genotypes were obtained by

polymerase chain reaction (PCR) amplification meth-

ods adapted from Boutin-Ganache et al. (2001) using

QIAGEN Multiplex PCR Kits (QIAGEN, Valencia,

CA, USA; for further details please refer to Appendix

1 in the supplemental material). Because the original

studies fromwhich we compiled genotypes did not use

identical suites of microsatellite loci, we created one

dataset, the 11 loci dataset (n = 422) that included all

samples with 11 loci and[ 67% of genotypes suc-

cessfully scored, which excluded 174 of our original

596 archived samples (not including the 62 novel

samples that were not analyzed at all loci), and a

second, the 19 loci dataset (n = 118), which included

all samples where[ 67% of the genotypes were

successfully scored at 19 loci.

The data were initially checked for genotyping

error due to null alleles and allelic drop-out in

Microchecker v. 2.2.3 (Van Oosterhout et al. 2004).

Analyses were conducted in R v. 3.5.1 (R Core Team

2018) unless stated otherwise. Hardy–Weinberg equi-

librium probabilities, the number of alleles (Na) per

locus, allelic richness, observed heterozygosity, and

the proportion of unique alleles for each locus, as well

as linkage disequilibrium (LD) between each locus

pair were all calculated using the package strataG

(Archer et al. 2017).

Out of the original 61 individuals used for valida-

tion, 50 had at least 67% of their loci amplify: 16 for

LA, 15 for OC, and 19 for SD. Generally, scoring

practices were similar and consistent among all labs.

To standardize genotypes, we primarily corrected for

size shifts and variation in allele scoring among

observers. In many cases, there were consistent size

shifts for each locus among all samples within a study

site that could be corrected by adding or subtracting

base pairs to standardize genotypes. Inconsistencies

and standardization errors occurred more often for

alleles on the far ends of a locus’ range. These alleles

can potentially drift out of their designated bins,

resulting in misscalls (Ellis et al. 2011). This was dealt

with by adjusting correction factors at the ends of a

locus’ allelic range, typically by adding or subtracting

1–2 base pairs to the size shift correction. For example,

locus FCA 023 in SD had a correction factor of 17

except for the two smallest alleles, 142 and 144 which

were corrected with a 15 base pair adjustment. Out of

the 14 loci that were shared between all three study

areas, 13 had clean shifts after errors for the original

dataset were cleaned and when certain errors were

corrected for as described above. The only locus that

did not have a clean shift with a correctable error was

FCA077, which may have been due to prior PCR

misamplification. This locus was therefore excluded

from the validation.

Microchecker (Van Oosterhout et al. 2004) indi-

cated that there was no evidence of stuttering or allelic

dropout in the 11 loci dataset, but there was evidence

of two null alleles in the 13 loci originally evaluated

(at loci FCA 045 and FCA 090), which were elimi-

nated from further analyses, leaving 11 loci for

population structure analysis. In the 19 loci dataset

there was no evidence of stuttering or allelic dropout,

or of null alleles in the 19 loci (Van Oosterhout et al.

2004). In both datasets, evidence of linkage disequi-

librium (LD) was found in each previously published

study area. However, because none of the same pairs

of loci in LD occurred across all study areas, we did
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not eliminate any loci from our analysis due to LD. In

the 11 loci dataset, five (out of 11 total) loci differed

from Hardy Weinberg equilibrium (HWE) in LA, four

in OC, two in SD, none in GG, and one in SJ (Tables 1

& S2). In the 19 loci dataset, there were five loci in LA

(out of 19 total) that significantly differed from HWE,

three in OC, none in SD, one in GG, and three in SJ

(Tables 1 & S4). Because no loci differed from HWE

across all five sub-populations in either dataset, we

assumed all sub-populations to be in HWE. Related-

ness was tested in ML-RELATE (Kalinowski et al.

2006) among all individuals within each population in

the 19 loci dataset.

Population structure and relationship analysis

For both the 11 and 19 loci datasets, we calculated the

population differentiation statistic for genetic diver-

sity, Dest (Jost’s D; Jost 2008) and all respective

p-values (Tables S3 & S5). We evaluated population

structure using two programs, STRUCTURE and

discriminant function analysis of principal compo-

nents (DAPC), to compare and contrast population

structuring and assignments. Using STRUCTURE v.

2.3.4 (Pritchard et al. 2000), which uses a Bayesian

clustering algorithm to delineate populations, we ran

each simulation for 5.0 9 105 MCMC iterations after

a 5.0 9 104 burn-in in an admixture model with

putative populations as LOCPRIOR based on broad

study area assignments (LA, OC, SD, GG, and SJ).

Genetic population clusters (K) were assessed from

K = 1–10, three times per K value. We used

STRUCTURE Harvester (Earl and vonHoldt 2012)

to calculate DK (Evanno et al. 2005) and LnP(K) to

determine K, or the number of subpopulations

(Evanno et al. 2005).

We performed a DAPC using the adegenet package

(Jombart 2008), which employs a principal component

analysis (PCA) approach to identify population struc-

ture and minimize within group variation (Jombart

et al. 2010). The resulting principal component scores

are then input into a discriminant analysis which

identifies among group variance. In contrast to

STRUCTURE, DAPC does not require populations

to be in HWE and is more capable of identifying weak

and hierarchical population structure (Jombart et al.

2010). We determined the number of principal com-

ponents to retain after model validation of correctly

assigned individuals to clusters using cross-validation.

Because of lack of convergence of K-means clustering

with the 11 loci dataset and the smaller sample sizes of

the 19 loci dataset, we used sampling locations as a

prior for DAPC analyses. For the 11 loci analysis, we

performed our DAPC based on population structuring

Table 1 Microsatellite summary statistics by study area

Study area Number of samples Number of alleles

averaged across loci

Proportion of unique

alleles averaged

across loci

Average

heterozygosity

across loci

11 loci

GG 12 4.27 0.17 0.68

LA 196 6.91 0.03 0.70

OC 124 7.73 0.05 0.72

SD 73 7.27 0.05 0.75

SJ 17 5.55 0.13 0.73

19 loci

GG 13 4.26 0.19 0.64

LA 18 5.42 0.20 0.65

OC 38 6.53 0.09 0.68

SD 32 6.79 0.13 0.74

SJ 17 6 0.14 0.73

11 loci (n = 422) and 19 loci (n = 118) dataset summary per population; Golden Gate National Recreation Area (GG), Los Angeles

Counties (LA), Orange County (OC), San Diego (SD), and San Jose (SJ)
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patterns established in the published literature (Riley

et al. 2006; Ruell et al. 2012; Lee et al. 2012; Serieys

et al. 2015b). This included smaller populations in LA

separated by US101 (referred to as N101 and S101) as

well as a split in the OC region delineating two

separate populations on either side of I-5, (referred to

as OC inland (OCI) and OC coastal (OCC)). For the

LA region, we ran analyses both with and without

individuals sampled before and during the mange

epizootic in LA as well as after the mange-related

genetic bottleneck (Serieys et al. 2015a). The inclu-

sion of individuals both before and after the mange

bottleneck produced similar results, but we present

analyses with post-mange individuals for clarity.

STRUCTURE plots were edited using STRUCTURE

PLOT v2.0 (Ramasamy et al. 2014). To explore the

population-level relationship between genetic and

geographic distances and test for isolation by distance

among bobcat populations, we assessed pairwise

genetic distance, measured as Dest (Jost 2008), in

relation to Euclidean distance using a maximum

likelihood population-effects (MLPE) model in the

ResistanceGA package (Peterman 2018) and calcu-

lated 95% confidence intervals with the lme4 package

(Bates et al. 2015). Finally, to further examine the

relationship between six subpopulations (GG, SJ, LA,

OCC, OCI, and SD) for the 11 loci dataset, we used a

graph theoretic approach as described in Dyer and

Nason (2004), implemented in gstudio and popgraph

in R (Dyer 2009).

Landscape resistance analysis

To explore whether anthropogenic landscape features

were linked to gene flow for bobcats, we conducted a

landscape genetic analysis using the 19 loci dataset,

testing resistance models within each of four southern

California subpopulations (LA, OCC, OCI, and SD),

as well as for all individuals sampled in the southern

California study areas (n = 88). Using a hierarchical

approach, we tested five related landscape variables to

investigate the role of road density, traffic density,

other metrics of urban areas (distance to urban area,

percent of impervious surface), or a composite metric

of urbanization and naturalness explained the patterns

of genetic variance we observed. We calculated road

density of all roads ranging from freeways to residen-

tial streets measured as km of road per km2 using Open

Street Map data for California (‘‘OpenStreetMap’’

2014). Traffic density data, represented as distance

decayed annual average daily traffic (AADT), were

obtained from MacDonald (2017). Distance to urban

was calculated as the Euclidean distance to the edge of

any urban land uses, not including roads, based on

land-use data from the California Department of

Conservation. Percent impervious surface estimates

generated from the National Land Cover Database (Jin

et al. 2013) represented the combined influence of

both roads and developed areas. Finally, in addition to

considering potential barriers to gene flow, we eval-

uated a landscape permeability surface (The Nature

Conservancy, unpublished data) which ranged from

low permeability in more intensely developed areas to

high permeability through intact natural areas. This

surface was developed using a combination of natural

land cover classes (Jin et al. 2013), housing density,

road and rail data, and energy development data of

local (3 km) movement potential based on resistance

values assigned to land cover and housing density

classes as well as roads and energy infrastructure such

as power transmission lines and gas pipelines. We

selected or generated these continuous variables to

explore different aspects of urbanization that may

affect bobcats within our study region.

We employed a multiscale approach similar to

Zeller et al. (2014), evaluating the variables described

above at a range of biologically relevant spatial scales

ranging from daily movement distances to home range

size (* 2 km2 for females; Crooks 2002; Riley et al.

2003), and with consideration of the likely perception

distance of bobcats in the region given previously

observed dispersal events of up to 16–20 km. Each

potential resistance surface was smoothed at these

spatial scales (170 m, 275 m, 519 m, 1000 m,

2000 m, 3000 m, and 4000 m) using the smoothie

package v 1.0–1 (Gilleland 2013). We then trans-

formed these scaled surfaces using seven functions

and rescaled each to range from 1–100 (Fig. S1).

Positive or negative transformation functions were

used to represent increasing or decreasing resistance

with increasing values of that variable. We also used

the inverse Ricker transformation to account for

variables that might have a low resistance at moderate

values.

Following the approach described in Zeller et al.

(2017), we calculated genetic (Nei’s distance and DPS)

(Bowcock et al. 1994) and geographic distances. We

then compared the different scales, transformations,
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and resistance surfaces developed for each variable

using a univariate linear mixed effects model and a

MLPE to account for the pairwise nature of the data

using a combination of code from the ResistanceGA

(Peterman 2018), gdistance (van Etten 2018), and

lme4 (Bates et al. 2015) packages in R. We selected

the best scale and transformation for each resistance

surface using Akaike’s Information Criterion, cor-

rected for small sample size (AICc; Burnham and

Anderson 2004) and then ranked each surface by AICc

to determine which had the greatest explanatory power

in describing the observed patterns of genetic variation

across all of southern California and within the four

subpopulations we tested.

Results

Population structure and relationship analysis

Using STRUCTURE on the 11 loci data, we found that

DK = 3 (Fig. 2a) with one population roughly repre-

senting LA, the second population including individ-

uals from OCC, and the last population representing a

combination of OCI, SD, GG, and SJ. Given the low

likelihood that bobcats from the northern California

groups (GG and SJ), which are more than 500 km

away and separated by the California’s Central Valley

and urbanization in the San Francisco Area, represent

a single population with bobcats in southern Califor-

nia, we then ran STRUCTURE using the 19 loci

dataset. Our initial analyses also found little popula-

tion differentiation (DK = 2) with one cluster identi-

fied as an isolated OCC population and a second

cluster composed of all other populations. This strong

signal from OCC has been previously documented in

bobcats and mule deer (Ruell et al. 2012; Lee et al.

2012; Fraser et al. 2019). To account for this, we ran

STRUCTURE without the distinct OCC population to

better understand patterns among the remaining study

sites. This resulted in DK = 5 which reflected sub-

populations in (1) LA, (2) SD and most of OCI, (3)

GG, and (4) SJ and (5) with OCC as the fifth

subpopulation (Fig. 2b).

We then compared the STRUCTURE results to

outputs from our DAPC analysis. With the 11 loci

dataset, we observed a stepping stone type pattern

across most of the region and State (Fig. 3). The LA

study area, OCC and GG exhibited the greatest degree

of differentiation. In the 19 loci dataset, the differen-

tiation in LA was evident as individuals north and

south of Highway 101 were distinct (Fig. 4). In

keeping with our previous results from STRUCTURE,

OCI and SD overlap, likely reflecting a high degree of

gene flow. The pairwise Dest matrices for both the 11

loci (Table S3) and 19 loci (Table S5) datasets further

Fig. 2 STRUCTURE plots of California bobcats: a 11 loci dataset (n = 422), with DK = 3. b 19 loci dataset (n = 100) with DK = 5

(OCC not shown)
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supported the patterns of hierarchical relationships we

observed among study sites from the DAPC analysis.

Based on the MLPEmodel of the relationship between

genetic and geographic distances among populations,

we did find evidence of isolation by distance in the

observed genetic patterns (Fig. 5). Population pairs

were focused around two clusters, one representing

within-region pairs (i.e., within southern California or

northern California), and the other from between-

region pairs. Although many subpopulation pairs

demonstrated relationships keeping with a pattern of

isolation by geographic distance, some pairs were less

genetically differentiated than expected given their

distance (e.g., OCI–SD), whereas others were more

differentiated than expected. In both groups, OCC,

GG, and N101 generally exhibited greater genetic

differentiation than could be explained by geographic

distance alone (Fig. 5). Pairwise relatedness among

individuals within populations ranged from 0.01

(S101, SE = 0.0071) to 0.08 (N101, SE = 0.0214).

When we employed a graph theoretic approach to

further explore relationships between subpopulations

with the 11 loci dataset, we found similar patterns to

our DAPC analysis, and gained a better understanding

of the connectivity and relationships among these

populations (Fig. S2).

Landscape resistance analysis

We found that regardless of genetic distance measure

used, permeability, a landscape feature which captures

both built and natural landscape features, was the

strongest predictor of genetic differences and variation

across the southern California landscape for bobcats

(Table S6; Fig. 6). An inverse Ricker transformation

of permeability at a 2000-m scale was the strongest

predictor of the observed patterns of genetic variation,

indicating that bobcats were influenced at a coarse

scale or neighborhood by low resistance at moderate

values of permeability and high resistance at either

low or high levels of permeability. However, we did

not have many data points or paths between points

represented at the highest levels of permeability given

the coastal urban nature of our study sites. Through our

model testing, we found that resistance transforma-

tions demonstrating avoidance of anthropogenic

Fig. 3 Results of a priori population clustering of the 11 loci

dataset in a discriminant function analysis of principal

components (DAPC) scatterplot of population clusters. Each

dot represents an individual and the color, a labeled popula-

tion. Ellipses summarize the cloud of points with bivariate

normal distributions
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features (i.e., impervious surface and roads) were

important for describing genetic distance, but that the

combination of the natural component of the land-

scape with these anthropogenic features represented

by the permeability surface greatly enhanced model

prediction. Given that the impervious surface variable

was consistently a better predictor of genetic patterns

than the tested road metrics, it appears that the

combination of all three landscape features—use of

intact natural areas and avoidance of developed lands

as well as roadways—are critical in driving patterns of

genetic variation among bobcat populations in south-

ern California.

In comparison, our analysis of landscape resistance

within the four southern California subpopulations

(LA, OCC, OCI, and SD) revealed differing landscape

features and scales that likely affect genetic differen-

tiation at the local level (Table S7). In LA, Euclidean

distance was the best predictor of genetic differenti-

ation with individuals farther apart being more genet-

ically distinct. In OCC, road density at a 2000-m scale

and either a positive monomolecular concave (based

on DPS) or inverse Ricker transformation (based on

Nei’s distance) performed best. This would suggest

that in OCC, where bobcats were genetically distinct

from the other subpopulations, that roads influence

individuals at a coarse neighborhood either at a

threshold where resistance is high once road density

increases to a certain limit, or that resistance is high at

both low and high road densities and low at moderate

road densities. Similar to the full southern California

analysis, the performance of the inverse Ricker

transformation may be affected by a limited number

of samples in areas of low road density in the highly

constrained region of coastal Orange County. In both

OCI and SD, permeability was the selected predictor,

just as in our analysis of all southern California

individuals, although at different scales and transfor-

mations. OCI bobcats appeared to be influenced at a

coarse scale of permeability (2000 m) but resistance

appeared to be greatest when permeability was low.

This is perhaps because the most permeable lands in

this area are in the steep, rugged, Santa Ana Moun-

tains, which bobcats may opt to skirt the edges of,

rather than cross directly. In SD, bobcats appeared to

respond to permeability at a finer neighborhood

Fig. 4 Results of a priori population clustering of the 19 loci

dataset in a discriminant function analysis of principal compo-

nents (DAPC) scatterplot of population clusters. Each dot

represents an individual and the color, a labeled population. El-

lipses summarize the cloud of points with bivariate normal

distributions
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(170 m), also with the inverse Ricker transformation

observed across all southern California individuals.

Discussion

Using bobcats as an indicator species, our analytical

approaches identified localized areas of limited or

impeded landscape connectivity across southern Cal-

ifornia as evidenced by genetic isolation. The

strongest signals of genetic isolation came from the

most constrained urban areas in the region in LA and

OCC. Our DAPC results affirmed evidence of isola-

tion of bobcat populations in Los Angeles identified in

published literature (Riley et al. 2006; Serieys et al.

2015b) that likely resulted from barriers posed by

development and the US101. This genetic differenti-

ation may also reflect a population bottleneck caused

by a mange outbreak in 2002 (Serieys et al. 2015b),

which may have affected the genetic variation of our

samples. The genetic differentiation of OCC around

the San Joaquin Hills was most apparent in our

STRUCTURE analyses, consistent with prior studies

(Ruell et al. 2012; Lee et al. 2012), which suggest a

population division driven by the I-5 freeway. This

pattern of fragmentation west of I-5 has been docu-

mented in other species including southern mule deer

(Odocoileus hemionus fuliginatus; Fraser et al. 2019)

and cactus wren (Campylorhynchus brunneicapillus;

Barr et al. 2015). As expected, we also observed higher

differentiation in GG, likely due to fragmentation from

urban isolation and roadways, similar to the differen-

tiation observed in OCC. We found that Euclidean

distance was not an informative predictor for gene

flow across the landscape similar to bobcats in New

Hampshire (Litvaitis et al. 2015).

While our analyses confirmed previously identified

regional barriers to landscape connectivity, we also

identified areas of connectivity not previously

reported. We observed a high degree of gene flow

between SD, OCI, and even SJ, despite its geographic

distance from these southern California populations.

Although considered part of the larger San Francisco

Bay Area metropolis, the SJ study area lies to the

southeast of the urban zone, with putatively permeable

habitat linking the area to southern California along

the central coast range. Further research would be

required to identify the landscape linkages that foster

bobcat movement and gene flow between northern and

southern California.

Our regional study of samples within the state of

California can be further contextualized at a conti-

nental scale by comparing our results with a previous

study of bobcat genetics across North America which

also included samples from our OC study site (Reding

et al. 2012). Of 1,700 samples from the bobcat’s range

in North America, only southern California and

southern Florida formed small, distinct genetic clus-

ters among the 10 populations identified using

microsatellite data (Reding et al. 2012). This national

pattern of isolation for southern California bobcats

mirrors findings for mountain lion populations in LA

which were found to have some of the lowest genetic

diversity nationally, second only to the Florida panther

(Puma concolor coryi, Roelke et al. 1993; Riley et al.

2014). Similar genetic population structuring and lack

of genetic diversity within portions of southern

California were also observed for mountain lions in

a regional-scale analysis that encompassed the states

of California and Nevada (Gustafson et al. 2019).

The landscape analysis we conducted provided

insight into the mechanisms of isolation driving

observed patterns of genetic differentiation both

Fig. 5 Isolation by distance (IBD) plot, illustrating the

relationship between pairwise genetic (measured as Dest) and

geographic (measured as Euclidean) distances among the seven

sampled California bobcat populations using the 19 loci dataset

(SD—SanDiego; OCC—Orange County coastal; OCI—Orange

County inland; S101—south of US101 in LA; N101—north of

US 101 in LA; SJ—San Jose; GG—Golden Gate), using a

maximum likelihood population-effects (MLPE) model in the

ResistanceGA package (Peterman 2018). Line represents the

predicted relationship between genetic and geographic distance,

suggesting a general pattern of IBD, with shading of the 95%

confidence interval. Pairs on the left side of the graph are within

region comparisons and on the right side are among region

comparisons. Points above the line represent more genetic

differentiation than expected from geographic distance
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within bobcat subpopulations and at a regional scale

across southern California. Our hierarchical approach

allowed us to compare individual landscape predictors

in a complex and heterogeneous landscape and,

although univariate models had relatively low predic-

tive capacity with unexplained variation in the pair-

wise genetic data, we identified key features that likely

affect bobcat gene flow locally and regionally

(Table S6). Consistent with prior findings from

local-level analyses, (Riley et al. 2006; Ruell et al.

2012; Lee et al. 2012; Serieys et al. 2015b) roads,

traffic, and urbanization all appear to be contributing

factors leading to population structuring, particularly

in the intensely urbanized areas where those features

are most prominent. Not surprisingly, within OCC, a

subpopulation we found to be substantially genetically

distinct, road density best explained this differentia-

tion in an area hemmed in by several large freeways

which has previously been noted in local-level anal-

yses (Lee et al. 2012). Interestingly, gene flow in LA,

which we also found to be genetically distinct based on

our other analyses, was best described by Euclidean

distance. This is perhaps because of the smaller

sample size in this subpopulation, our inability to

separate our N101 and S101 samples for this analysis,

and the close proximity of the capture locations for

individuals from LA in our 19 loci dataset. However,

both within OCI and SD as well as across the region, it

Fig. 6 Map of landscape resistance analysis results depict-

ing permeability, which best explained the genetic distance of

bobcats sampled in southern California at an inverse Ricker

transformation at a 2000 m scale. Brown indicates areas of low

permeability across the landscape and blue, areas of high

permeability. Southern California bobcats (n = 88) sampling

locations are partitioned by subpopulation; in LA, north (N101;

circle) and south (S101; circle with dot) of US101, west (OCC;

white square) and east (OCI; white square with dot) of the I-5 in

OC, and SD (SD; triangle)
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was the natural features of the landscape such as intact

shrublands and riparian areas in combination with

these anthropogenic features, represented by a per-

meability metric, that best explained the observed

patterns of genetic distance among southern California

bobcats.

The importance of natural landscape features in

general, and streams and riparian areas in particular,

has also been linked to bobcat presence or dispersal in

previous studies (Kozakiewicz et al. 2019; Markov-

chick-Nicholls et al. 2008). In our study area specif-

ically, permeability was relatively high among the

more contiguous habitats where genetic differentia-

tion was lowest, including SD and OCI. The spatial

patterns of permeability in these two relatively intact

areas may have also affected the scales at which

bobcats appear to respond to the surrounding land-

scape. In OCI, there is a large, highly permeable block

of conserved land surrounded by impermeable devel-

opment which may drive coarse-level responses. In

SD, a number of smaller, coastal preserves with

moderate to high permeability provide a connection to

the highly permeable landscape in the eastern portion

of the region and which may affect gene flow at a finer

ecological neighborhood. In contrast to the patterns in

these two relatively intact areas, permeability was

much lower around OCC and LA, where bobcat

populations were more isolated and genetically dis-

tinct from adjacent populations (Fig. 6). These results

are further supported by the MLPE model of the

genetic and geographic distance, which indicated a

general pattern of isolation by distance within and

among our two study regions, but with exceptions to

this pattern demonstrated by the most constrained

study sites with the lowest degree of permeability in

our analysis: GG, OCC, and LA north of US101

(Fig. 5).

To facilitate planning and management for con-

nectivity, wide-ranging carnivores can inform local

and regional conservation efforts (Gustafson et al.

2019). Our study and the results of analyses of other

species in the region highlight the importance of

maintaining connectivity on local scales, while also

improving and establishing sustainable linkages to

habitats at the regional scale. Roads and development

act together as barriers of movement for bobcats;

therefore it is not only important to target wildlife

crossings to increase road permeability (Rodriguez

et al. 1996), but also to conserve undeveloped land

abutting such crossings to facilitate their use and

maintain landscape-scale permeability (Ng et al.

2004). Our findings of regional population structure

across an impacted landscape and urbanization gradi-

ent are critical for understanding how urbanization and

subsequent habitat fragmentation result in population-

level impacts. This regional perspective is particularly

important for species sensitive to fragmentation, like

bobcats, because landscape-level genetic signals may

be difficult to detect with local-level analyses alone

(Kozakiewicz et al. 2019). Utilizing population

genetic analyses for bobcats and other indicator

species as a tool can help gauge how populations are

responding to landscape changes due to urbanization,

providing important context for future management

action and land acquisition.
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