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Abstract
Urbanization is a major factor driving habitat fragmentation and connectivity loss in 
wildlife. However, the impacts of urbanization on connectivity can vary among spe‐
cies and even populations due to differences in local landscape characteristics, and 
our ability to detect these relationships may depend on the spatial scale at which 
they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and 
the status of bobcat populations is an important indicator of connectivity in urban 
coastal southern California. We genotyped 271 bobcats at 13,520 SNP loci to con‐
duct a replicated landscape resistance analysis in five genetically distinct populations. 
We tested urban and natural factors potentially influencing individual connectivity in 
each population separately, as well as study‐wide. Overall, landscape genomic effects 
were most frequently detected at the study‐wide spatial scale, with urban land cover 
(measured as impervious surface) having negative effects and topographic roughness 
having positive effects on gene flow. The negative effect of urban land cover on con‐
nectivity was also evident when populations were analyzed separately despite vary‐
ing substantially in spatial area and the proportion of urban development, confirming 
a pervasive impact of urbanization largely independent of spatial scale. The effect of 
urban development was strongest in one population where stream habitat had been 
lost to development, suggesting that riparian corridors may help mitigate reduced 
connectivity in urbanizing areas. Our results demonstrate the importance of replicat‐
ing landscape genetic analyses across populations and considering how landscape 
genetic effects may vary with spatial scale and local landscape structure.
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1  | INTRODUC TION

Urban development causes habitat degradation and fragmentation 
(LaPoint, Balkenhol, Hale, Sadler, & van der Ree, 2015; Ramalho & 
Hobbs, 2012). Habitat fragmentation exposes organisms to edge 
effects such as increased anthropogenic disturbance or changes in 
interspecific interactions such as predator‐prey relationships and 
competition (Fahrig, 2003; Murcia, 1995). Habitat fragmentation also 
isolates populations and reduces functional connectivity, defined as 
the degree to which the landscape facilitates or impedes movement 
among patches (Taylor, Fahrig, Henein, & Merriam, 1993). Isolated 
populations are susceptible to inbreeding depression and genetic 
drift that reduce overall fitness and adaptive potential in the face of 
current and future threats, such as climate change and novel patho‐
gens (Hoffmann, Sgrò, & Kristensen, 2017; Keyghobadi, 2007), and 
suffer reduced potential for demographic rescue (Brown & Kodric‐
Brown, 1977). However, the consequences of fragmentation may 
vary among populations and species due to variation in factors such 
as patch size, the distribution and intensity of urban development, 
landscape characteristics such as topography and vegetation, as well 
as intrinsic factors such as species vagility or generality of habitat 
requirements (Johnson & Munshi‐South, 2017; Rivkin et al., 2019). 
In addition, the impacts of habitat fragmentation and landscape 
drivers of connectivity may vary across spatial scales (Cushman & 
Landguth, 2010a; Vandergast, Bohonak, Hathaway, Boys, & Fisher, 
2008; Vandergast, Bohonak, Weissman, & Fisher, 2007), particularly 
in urban environments (Miles, Dyer, & Verrelli, 2018). Connectivity 
studies of single landscapes have limited ability to account for this 
variation and are susceptible to over‐generalization of findings that 
may only be locally relevant. Thus, replication across populations or 
landscapes is necessary to assess the generality of as well as the 
scale‐ and context‐dependency of landscape influences on connec‐
tivity. However, except for some recent examples (Balbi et al., 2018; 
Miles et al., 2018; Robertson et al., 2018; Row et al., 2018; Short Bull 
et al., 2011), few connectivity studies incorporating such replication 
exist.

The impacts of urban development can be particularly acute 
for mammalian carnivores (Fuller, DeStefano, & Warren, 2010; 
Ordeñana et al., 2010; Randa & Yunger, 2006; Tracey et al., 2013). 
Many carnivore species are territorial, exist at low population den‐
sities, and require large, connected areas of habitat to support via‐
ble populations (Noss, Quigley, Hornocker, Merrill, & Paquet, 1996). 
Consequently, habitat fragmentation and its genetic and demo‐
graphic effects are frequently implicated in carnivore declines (e.g., 
Beier, 1993; Dixon et al., 2007; Ernest, Vickers, Morrison, Buchalski, 
& Boyce, 2014; Lu et al., 2001; Roelke, Martenson, & O'Brien, 1993). 

Given their sensitivity to fragmentation, carnivores are excellent 
indicator species of functional landscape connectivity (Hunter, 
Fisher, & Crooks, 2003; Noss et al., 1996). Moreover, their large 
home ranges frequently make them useful umbrellas for conserving 
broader ecological communities (Noss et al., 1996). These factors, in 
addition to the potentially important role that carnivores can play 
in ecosystems (Estes et al., 2011), particularly in constrained urban 
landscapes (Crooks, Riley, Gehrt, Gosselink, & van Deelen, 2010; 
Crooks & Soulé, 1999), emphasize the value in understanding how 
landscape influences carnivore connectivity.

Coastal southern California is one of the most urbanized land‐
scapes in North America, having experienced rapid human popula‐
tion growth and expansion of developed areas over the past several 
decades (U.S. Census Bureau, 2010), with a human population of 
over 13.3 million in the Los Angeles metropolitan area alone (U.S. 
Census Bureau, 2016). This region is also renowned as a hotspot 
for biodiversity and endemism, with habitat fragmentation and loss 
leading to high concentrations of threatened species in remaining 
natural areas (Dobson, Rodriguez, Roberts, & Wilcove, 1997; Myers, 
Mittermeier, Mittermeier, da Fonseca, & Kent, 2000). Despite ex‐
tensive urban development, coastal southern California retains rel‐
atively intact communities of carnivore species that vary in their 
requirements for habitat patch size and quality, and in their overall 
sensitivity to urbanization (Crooks, 2002; Ordeñana et al., 2010). 
In particular, bobcats (Lynx rufus) are the third largest carnivore in 
coastal southern California, having intermediate sensitivity to ur‐
banization and a requirement for adequate linkages among habitat 
patches (Crooks, 2002; Riley et al., 2003). Consequently, the status 
of bobcat populations is regarded as an important indicator of func‐
tional landscape connectivity in this region (Crooks, 2002; Hunter et 
al., 2003; Tracey et al., 2013).

Telemetry studies show that bobcats in coastal southern 
California rely on natural areas that consist predominantly of coastal 
sage scrub and chaparral vegetation (Riley et al., 2003; Tracey et al., 
2013). However, bobcats are also habitat generalists and may per‐
sist near to and even within anthropogenically altered and popu‐
lated areas (Hunter et al., 2003; Lyren, Alonso, Crooks, & Boydston, 
2008b; Riley et al., 2003). Although major roads and dense urban 
development are barriers to functional connectivity in this region, 
telemetry and genetic studies (including pathogen genetics) have 
indicated occasional crossing of major roads by bobcats, mostly fa‐
cilitated by culverts or underpasses (Fountain‐Jones et al., 2017; Lee 
et al., 2012; Lyren et al., 2008b; Poessel et al., 2014; Riley et al., 
2006; Serieys, Lea, Pollinger, Riley, & Wayne, 2015). Nonetheless, 
several independent microsatellite studies have broadly character‐
ized a collection of genetically distinct bobcat populations, which 
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are confined to discrete habitat patches of varying size separated 
by major roads and areas of concentrated urban development (Lee 
et al., 2012; Riley et al., 2006; Ruell et al., 2012; Serieys et al., 2015; 
Thomassen et al., 2018). These studies have focused on hard anthro‐
pogenic barriers influencing connectivity among these populations, 
and thus the factors driving connectivity within populations are 
generally unknown. However, we might expect these drivers to vary 
from one population to another due to variation in patch size and 
degrees of urban association in this region.

Landscape factors influencing connectivity probably differ 
within versus between populations because these factors have 
often contributed to the formation of population boundaries them‐
selves. Therefore, the study of how landscape factors within popula‐
tions influence connectivity can provide different insights compared 
to the study of how landscape influences connectivity among pop‐
ulations. Furthermore, by narrowing our focus to populations and 
patches contained within the bounds determined by hard anthro‐
pogenic barriers such as highways (thereby excluding the strong 
genetic signals of these barriers from analysis), we can assess finer 
scales of both spatial genetic variation and landscape heterogeneity. 
Investigating this finer‐scale variation can enable us to better de‐
tect which factors might be important for maintaining the degree of 
connectivity that necessarily must exist within a population, and to 
assess the potential impacts of landscape change on that connectiv‐
ity (Cushman & Landguth, 2010a). Thus far, it remains unclear which 
specific natural features, if any, are important in maintaining bobcat 
genetic connectivity.

Next‐generation sequencing technologies have greatly en‐
hanced our ability to accurately estimate neutral genomic variation 
compared to microsatellites (Fischer et al., 2017; Helyar et al., 2011; 
Santure et al., 2010). Coupling genomic data with rigorous landscape 
genetic approaches that incorporate the individual (as opposed to 
the population) as the statistical unit provides considerable power 
for identifying genetic variation at fine spatial scales to quantify 
functional connectivity (Cushman & Landguth, 2010b; Holderegger 
& Wagner, 2008; Manel, Schwartz, Luikart, & Taberlet, 2003). 
However, individual‐based connectivity studies and those using 
high‐resolution estimates of gene flow have been relatively rare in 
urban landscapes (LaPoint et al., 2015). These tools are particularly 
valuable for studying connectivity in wide‐ranging organisms such 
as bobcats, for which the influence of landscape on connectivity can 
be relatively subtle and difficult to detect. In addition, the spatial 
structure of bobcat populations in coastal southern California is well 
suited to a replicated landscape genetic design that tests factors 
affecting functional connectivity at multiple spatial scales across 
several comparable but distinct landscapes, with varying habitat 
structure and degrees of urbanization (Ruell et al., 2012).

We first aimed to identify landscape factors either promoting 
or constraining bobcat dispersal in coastal southern California, and 
secondly, to understand how these factors vary within and among 
populations from habitat patches with different landscape character‐
istics, including varying degrees of urbanization. We used next‐gen‐
eration sequencing to genotype bobcats at 13,520 SNP loci to make 

precise measurements of genetic relatedness among individuals. We 
then implemented an individual‐based landscape genomic approach, 
testing support for landscape resistance variables representing pos‐
sible effects of different landscape factors on bobcat connectivity, 
which we replicated among populations. Using this replicated land‐
scape genomic framework, we test our first hypothesis: that factors 
influencing connectivity will vary among populations depending on 
spatial scale and patch‐specific landscape context such as the extent 
of urbanization. Then, by analyzing individuals from all populations 
together, we test our second hypothesis: that factors affecting con‐
nectivity differ among versus within populations.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

We utilized 286 bobcat blood and tissue samples derived from three 
previous studies conducted in different areas in southern California 
(Figure 1). San Diego samples (n = 43) were collected between 2007 
and 2012 according to Jennings and Lewison (2013). Northwest 
Los Angeles (LA) samples (n  =  133) were collected between 1997 
and 2011 according to Riley et al. (2006) and Serieys et al. (2015). 
Southeast LA samples (n = 110) were collected between 2002 and 
2010 according to Lyren et al. (2006), Lyren, Alonso, Crooks, and 
Boydston (2008a), Lyren et al. (2008b). All animals were sampled 
from a combination of live trapping (n = 258) and opportunistically 
collected carcasses (n = 28) of predominantly roadkill. Live animals 
were captured, handled, and released using protocols approved by 
cooperating agencies and relevant animal ethics committees (see 
original publications, cited above, for detailed information).

2.2 | Laboratory procedure

We extracted genomic DNA using the Qiagen DNeasy Blood 
& Tissue Kit (Qiagen Inc.), eluting DNA in buffer EB. Agencourt 
Ampure XP SPRI beads (Beckman Coulter Inc.) were used to con‐
centrate some low‐yield DNA extractions. We prepared double‐di‐
gest restriction‐site‐associated DNA (ddRAD) libraries according to 
Peterson, Weber, Kay, Fisher, and Hoekstra (2012), using NlaIII and 
EcoRI‐HF restriction enzymes, on individual samples normalized on a 
within‐library basis to at least 200 ng DNA in 25 µl. A fragment size 
of 300–380 bp (excluding 75 bp adapters) was selected using a Blue 
Pippin size selection system (Sage Science Inc.) with a 100–600 bp 
2% agarose gel cartridge containing internal standards, with frag‐
ment size verified using an Agilent Tapestation 2,200 (Agilent). A 
total of 48 uniquely barcoded P1 adapters enabled subsequent iden‐
tification of pooled individuals, with biotinylated P2 adapters ena‐
bling streptavidin Dynabead (Invitrogen) purification to maximize 
efficiency of the final PCR amplification step. PCR was conducted 
over 12 cycles across five reactions per pool of individuals, using 
uniquely indexed primers to enable identification of each individual 
according to the pool of which it was a part, creating a two‐tiered 
barcode or index system. This per‐pool indexing allowed individual 
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P1 barcodes to be used more than once among multiple pools and 
combined within the same library.

An initial trial library of 16 individuals was prepared, followed 
by three libraries of 80 individuals, and one library of 82 individu‐
als, multiplexed to obtain a minimum average sequencing coverage 
of 12× per locus, per individual. To enable estimation of sequenc‐
ing error rates for optimization of locus assembly parameters 

(Mastretta‐Yanes et al., 2015), detailed below, each of the prepared 
libraries contained five within‐library replicates and five repli‐
cates shared with other libraries, except for the 16 sample library, 
which contained two individuals shared with other libraries/lanes. 
Collectively, a total of 12 individuals were replicated between li‐
braries and 20 were replicated within libraries, among 306 unique 
individuals (including re‐runs of 20 individuals due to initially low 

F I G U R E  1   faststructure analysis indicates five bobcat populations genetically isolated by geographic barriers in coastal Southern California, 
USA. All sampled individuals are shown as blue circles in the region‐wide black‐and‐white map, with shading indicating urban development. 
Insets A–C indicate populations defined for landscape genomic analyses. Population spatial boundaries are indicated as solid coloured lines, and 
sample locations are coloured according to individual population assignment based on faststructure analysis at K = 3 for both northwest and 
southeast of Los Angeles (Figure 2). Inset A shows populations northwest of Los Angeles, with East‐405 (n = 26) indicated in blue, South‐101 
(n = 43) indicated in red, and North‐101 (n = 61) indicated in yellow. Insets B and C show populations southeast of Los Angeles, with East‐5 
(n = 97) indicated in orange and West‐5 (n = 44) indicated in light green and dark green. Individuals with greater than 25% admixture are shown 
with multiple colours. Highways are shown in all maps as black lines, with primary barriers to host gene flow (highway 101, Interstate 405, and 
Interstate 5) indicated by thick black lines. Topography and land cover are also shown in colour maps, indicating urbanization in pink/red, forests 
in green, grasslands and scrub in tan, and agricultural areas in brown [Colour figure can be viewed at wileyonlinelibrary.com]
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sequencing coverage). Sequencing was conducted at the University 
of Oregon Genomics & Cell Characterization Core Facility for 
100 bp, single‐end reads, firstly on an Illumina Hi‐Seq 2500 (Illumina) 
for the 16 individual and one 80 individual library, and on an Illumina 
Hi‐Seq 4000 for the subsequent 80 and 82 individual libraries. Each 
library was sequenced on a separate lane.

2.3 | Bioinformatics and data filtering

Raw sequence files were initially checked for quality using FastQC 
(Andrews, 2010). Stacks version 1.42 (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013) was then used to assemble reads 
into loci and identify single‐nucleotide polymorphisms (SNPs). Per‐
individual demultiplexing of sequencing reads, Phred score quality 
filtering, and trimming of adapters was performed using the Stacks 
program process_radtags (http://catch​enlab.life.illin​ois.edu/stack​
s/). The Stacks pipeline for nonreference‐aligned data, denovo _ map.
pl, was used to build loci and identify SNPs from stacks of sequence 
reads, populate a catalogue containing sets of consensus loci, and 
match individuals against the catalogue to call alleles at each locus 
for each sample.

Four user‐specified parameters have been shown to influence 
rates of error introduced during denovo _ map.pl, with optimal set‐
tings being specific to each data set (Mastretta‐Yanes et al., 2015; 
Paris, Stevens, & Catchen, 2017): the minimum number of identical, 
raw reads required to create a stack (‐m); the maximum number of 

mismatches allowed between loci when processing a single indi‐
vidual (‐M); the maximum number of mismatches allowed between 
loci when building the catalogue (‐n); and the maximum number of 
stacks at a single de novo locus (‐max_locus_stacks). Using between‐ 
and within‐library replicates, we conducted 11 trials of denovo _ map.
pl, varying a single parameter at a time, and calculated locus error 
(proportion of loci genotyped in only one of a pair of replicate indi‐
viduals), allele error (proportion of allele mismatches among repli‐
cate pairs per locus), and SNP error (proportion of SNP mismatches 
among replicate pairs) for each trial according to Mastretta‐Yanes et 
al. (2015).

denovo _ map.pl was run using the full data set with parameter 
settings chosen to minimize error and maximize the number of 
SNP loci (‐m = 3, ‐M = 2, ‐n = 4, ‐max_locus_stacks = 3). We gener‐
ated a SNP matrix containing allele calls for each individual using 
the Stacks program populations with minimal filtering, except to 
retain only loci that were present in >20% of individuals in each 
population (defined in this step as northwest LA, southeast LA, 
and San Diego populations, as above), and only a single, randomly 
chosen SNP per locus. We used plink version 1.07 (Purcell et al., 
2007) for further filtering of the SNP matrix. Loci missing from 
>35% of individuals were removed, followed by individuals missing 
>50% of loci, and loci with a minor allele frequency <0.01. A dis‐
proportionate number of SNPs were located at read positions 94 
and 95, indicating increased sequencing error at these positions; 
these SNPs were also removed.

F I G U R E  2    faststructure analysis indicates population genetic structure among bobcats sampled from (a) northwest of Los Angeles and 
(b) southeast of Los Angeles, for K = 2, 3, and 4. These findings suggest three spatially and genetically distinct populations northwest of Los 
Angeles, and two spatially and genetically distinct populations southeast of Los Angeles. Individuals are organized along the x‐axis according 
to distance from the boundary of the nearest neighbouring population, with individuals from North‐101 in order of decreasing distance from 
South‐101, individuals from South‐101 in order of increasing distance from North‐101, and individuals from East‐405 in order of increasing 
distance from South‐101. Individuals from West‐5 are organized in order of decreasing distance from East‐5, and individuals from East‐5 are 
organized in order of increasing distance from West‐5 [Colour figure can be viewed at wileyonlinelibrary.com]
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Principal components analysis revealed a batch effect pertaining 
to our 80‐sample library sequenced on the Illumina Hi‐Seq 2500, 
which produced lower average coverage than our other libraries. This 
was corrected using an r (R Development Core Team, 2013) script 
employing functions from the adegenet (Jombart, 2008) and poppr 
(Kamvar, Brooks, & Grünwald, 2015) packages to compare rates of 
missing data for each locus per library, and remove loci for which 
the missing data rate in any library was above or below 1.5 times 
the interquartile range (as calculated from the missing data rates 
for a given locus across all libraries). We used pcadapt (Luu, Bazin, 
& Blum, 2017) to identify outlier loci potentially under selection, 
with Q‐value false discovery rate correction (αQ = 0.10). Following 
filtering, populations in Stacks was re‐run using SNP‐specific wh‐
itelists to produce final matrices containing putatively neutral SNPs 
that passed filtering for use in subsequent population and landscape 
genetic analyses.

2.4 | Population genomic structure

We employed the SNP data set to define the populations on which 
subsequent landscape genetics would be based. Although five ge‐
netically‐distinct populations have been previously defined in our 
study region based on microsatellite variation, we refined these 
boundaries using our SNP data set given expectations of slight dif‐
ferences owing to the markers and individuals analyzed between 
studies. Patterns of neutral genomic variation were initially visual‐
ized using principal components analysis in R. We used faststruc‐
ture (Raj, Stephens, & Pritchard, 2014) with no a priori population 
assignments to simultaneously estimate the number of genetic 
populations (K) and probabilistically assign individuals to popula‐
tions based on their multilocus genotypes. The faststructure script 
choosek.py was run using simple priors and five‐fold cross valida‐
tion to select a range of plausible K values based on maximizing 
marginal likelihood (tends to underestimate K; Raj et al., 2014) and 
choosing the minimum number of populations that have a cumula‐
tive ancestry contribution of at least 99.99% (tends to overesti‐
mate K; Raj et al., 2014). These K estimates were subsequently 

verified by examining cross validation errors and comparing spatial 
patterns of individual population assignments with geographical 
features that may act as barriers to gene flow (e.g., major roads). 
To improve accuracy of individual population assignment prob‐
abilities, faststructure was re‐run for the identified plausible K‐
values using more computationally intensive logistic priors. Plots 
of faststructure results showing individual assignment probabili‐
ties were constructed using ggplot2 (Wickham & Chang, 2008). 
Migrants were defined as having >50% faststructure assignment 
probability to a population other than that in which the individual 
was sampled.

Population genetic statistics were estimated for each of the 
genetically defined populations. Observed and expected hetero‐
zygosity and F‐statistics were calculated using diversity (Keenan, 
Mcginnity, Cross, Crozier, & Prodöhl, 2013). Allelic richness (Ar) was 
calculated using hp‐rare (Kalinowski, 2005) using the rarefaction 
procedure to account for differences in sample size among popu‐
lations. The rarefaction sample size was set according to the pop‐
ulation with the smallest sample size and was calculated as twice 
the number of individuals in this population genotyped for a given 
locus, averaged across all loci (we doubled the number of individuals 
as there were two alleles per locus). Effective population size (Ne) 
was calculated using the linkage disequilibrium method in neestima‐
tor (Do et al., 2014) while controlling for the number of chromo‐
somes to correct for downward bias in Ne estimates resulting from 
linkage within chromosomes (Waples, Larson, & Waples., 2016). We 
also excluded migrants (defined as above) from Ne estimates as these 
can introduce linkage disequilibrium bias (Waples & England, 2011). 
Pairwise genetic distances among populations (FST) were calculated 
using diversity with 95% confidence intervals calculated using 1,000 
bootstraps carried out over individuals within populations.

We interpret relative values of genetic relatedness among in‐
dividuals as being a product of gene flow and thus functional con‐
nectivity. Therefore, to quantify variation in connectivity within 
populations as well as across the entire study region, we measured 
genetic distances between pairs of individuals. Pairwise matrices of 
individual genetic distance were calculated as the inverse of the pro‐
portion of shared alleles (Dps) using adegenet, both for each popula‐
tion individually as well as the entire data set.

2.5 | Landscape genomics

We used a landscape resistance framework to test hypotheses re‐
garding the influence of landscape features within and among ge‐
netically‐defined populations (see above) on gene flow (Table 1). This 
isolation‐by‐resistance analysis framework was chosen because we 
believe that in this highly urbanized environment, loss of connectiv‐
ity among individuals and populations is the most likely mechanism 
by which landscape heterogeneity is affecting variation in gene flow. 
Alternatively, evolutionary or behavioural adaptation to local condi‐
tions may produce an isolation‐by‐environment effect whereby gene 
flow is reduced among populations adapted to different conditions 
(Wang & Bradburd, 2014). However, we show in a supplementary 

TA B L E  2   Models for comparing individual pairwise genetic 
distances (Dps) to landscape resistance distances in each population

Model name Model parameters

FULL Dps ~ ROUGH + VEG + IMPERV + 
ROAD + STREAM

HABITAT Dps ~ VEG + IMPERV + STREAM

DEVELOP Dps ~ IMPERV + ROAD + ROUGH

LINEAR Dps ~ ROAD + STREAM

UNIV.IMP Dps ~ IMPERV

UNIV.VEG Dps ~ VEG

UNIV.RD Dps ~ ROAD

UNIV.STRM Dps ~ STREAM

UNIV.TR Dps ~ ROUGH

IBD Dps ~ IBD
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analysis that variation in local conditions is unlikely to be affecting 
gene flow in these populations (Appendix S5).

We used arcgis 10.3 (ESRI) for all manipulation and analysis of 
spatial data except where specified otherwise. First, we demarcated 
the landscape area associated with each genetically‐defined popu‐
lation according to major landscape features surrounding individuals 
assigned to the same population. Where a freeway or major high‐
way (i.e., listed on the California State Highway network; Caltrans, 
2017) passed near sampled individuals, and there were no individu‐
als from the same genetic population sampled on the opposite side 
of the highway (with the exception of emigrants), this was used to 
define the spatial edge for a given population. However, where the 
edge of functionally impervious (defined below) urban development 
formed a continuous barrier between sampled individuals and the 
nearest major highway, this was instead used as the population 
edge. Functionally impervious urban development was defined using 
a method adapted from Ruell et al. (2012), by calculating for each 
30  m by 30  m raster cell whether a majority of surrounding cells 
within a 1 km radius contained medium or high density urban land‐
cover according to the National Landcover Database (Homer et al., 
2015). This threshold was chosen based on previous work indicating 
that bobcats avoid areas of high urban intensity (Ordeñana et al., 
2010; Riley et al., 2003; Tigas, Van Vuren, & Sauvajot, 2002). In one 
population (East‐5) where there was no clear geographic barrier with 
which to define one edge, we defined the edge using a minimum 
bounding rectangle around all sample locations with a 20 km buffer. 
We believe this 20 km buffer is sufficient to capture any landscape 
that might be utilized for dispersal among our sample locations, but 
we acknowledge that quantification of landscape characteristics 
within areas defined in this way is imprecise. Previous research indi‐
cates that despite occasional short incursions, bobcats rarely make 
substantial movements through heavily urbanized areas (Lyren et al., 
2008b; Riley et al., 2003). However, to account for the occasional 
use of these areas, and to eliminate any artificial edge effects in the 
landscape resistance analyses, we expanded each population area 
by one kilometer outside of the limits defined above, except where 
coastline formed the edge. We quantified the landscape characteris‐
tics of each genetic population within the areas defined above using 
Geospatial Modelling Environment (www.spati​aleco​logy.com).

For each of the defined genetic populations, we constructed 
landscape resistance surfaces representing hypothesized effects of 
landscape variables on bobcat gene flow for fine‐scale landscape ge‐
netic analyses. Landscape variables hypothesized to be positively re‐
lated to gene flow were topographic roughness, vegetation density, 
and streams, while urbanization and roads were hypothesized to be 
negatively related to gene flow. We rescaled raw landscape layers to 
a common scale of landscape resistance up to a maximum resistance 
of 100 as follows. Each categorical resistance surface (roads, rivers) 
was rescaled so that the minimum resistance  =  10, and the maxi‐
mum resistance = 100. Resistance surfaces representing continuous 
variables (topographic roughness, vegetation, urbanization) were 
rescaled to values between 1 and 100. In addition, we conducted 
transformations of the resistance surfaces using arcgis where we 

believed there was a clear ecological justification. For example, the 
topographic roughness and vegetation density resistance surfaces 
were transformed following our observations that the linearly trans‐
formed raw data did not adequately reflect the degree of heteroge‐
neity that would be experienced by bobcats on the landscape (due 
to large skews in the raw data such as where a single cell containing 
a tall cliff would have a topographic roughness of orders of magni‐
tude higher than the median, compressing most of the variation in 
the landscape into a very small range of resistance values). Although 
we did not exhaustively test all possible transformations, we chose 
transformations that best reflected our a priori biological hypoth‐
eses about how a given variable might affect bobcat movement 
(Table 1). We also generated an undifferentiated resistance surface 
for each population, representing isolation by distance (IBD; null 
model). We resampled all population‐specific resistance surfaces to 
ensure a consistent resolution of 30 m by 30 m. For the study‐wide 
landscape genetic analysis, we constructed resistance surfaces en‐
compassing the entire study area, which we resampled to a resolu‐
tion of 60 m by 60 m due to computational constraints. Preliminary 
tests across a smaller area produced highly similar results among 
30 m and 60 m resolutions. For each resistance surface, spatial data 
sources, resistance surface parameterization (including transforma‐
tions where applicable), and ecological justifications are presented 
in Table 1. circuitscape 4.0.5 (McRae, Dickson, Keitt, & Shah, 2008) 
was used to model connectivity between individuals across each re‐
sistance surface to produce pairwise matrices of hypothesized land‐
scape resistance to gene flow among individuals. circuitscape was run 
for each population individually, as well as across the entire region 
at once. Migrants were removed from single‐population landscape 
genetic analyses because genetic differentiation due to among‐pop‐
ulation barriers could not be adequately accounted for in our single‐
population resistance surfaces (see Appendix S4 demonstrating that 
model performance was substantially lower with migrants included). 
However, migrants were retained for the whole region (“study wide”) 
analysis.

Associations between landscape resistance matrices and pair‐
wise genetic distances were tested using linear mixed effect mod‐
els incorporating a maximum likelihood population effects (MLPE) 
approach (Clarke, Rothery, & Raybould, 2002; Van Strien, Keller, & 
Holderegger, 2012) using the lme4 package in R. This method in‐
corporates a random effect structure that accounts for the nonin‐
dependence among pairwise data, and has been shown recently to 
outperform other model selection methods for landscape genetics 
(Shirk, Landguth, & Cushman, 2018). Prior to fitting models, matrices 
of Dps were log‐transformed to satisfy normality assumptions and 
all dependent and independent variables were rescaled to units of 
standard deviation and a mean of zero. Ten models were fitted per 
population, including four multivariable models and all six possible 
single‐variable models (Table 2). Multivariable models were built 
according to general hypotheses about how gene flow might be in‐
fluenced by landscape, an approach which is favoured over testing 
all possible multivariable models (Burnham & Anderson, 2002). For 
example, the “HABITAT” model explored the hypothesis that the 

http://www.spatialecology.com
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distribution of habitat in the form of vegetation is driving gene flow 
patterns and included as fixed effects vegetation density, streams 
(accounting for increased riparian vegetation density), and impervi‐
ous surfaces (urban areas contain less habitat). Other multivariable 
models were FULL (all fixed effects included), DEVELOP (the distri‐
bution of anthropogenic development is driving gene flow; includes 
topographic roughness, which has influenced where development 
has occurred), and LINEAR (linear features, i.e., roads and streams, 
act as barriers to or corridors for gene flow). Multicollinearity among 
fixed effects were assessed for each multivariable model by calculat‐
ing the variance inflation factor (VIF). Variables with VIF > 10 were 
considered highly correlated and were excluded from final models.

MLPE models were initially fitted and evaluated for each pop‐
ulation using the Bayesian Information Criterion (BIC), which Row, 
Knick, Oyler‐McCance, Lougheed, and Fedy (2017) found to outper‐
form R2 for ranking models. All models with a ΔBIC < 5 were consid‐
ered candidates for the best model. Marginal R2 were calculated for 
descriptive purposes (calculated using the mumin package; Bartoń, 
2014). Well‐supported candidate models were then refitted using 
restricted maximum likelihood (REML) for unbiased estimation of 
beta coefficients (Clarke et al., 2002; Van Strien et al., 2012). Row 
et al. (2017) found that inclusion of an undifferentiated resistance 
variable representing IBD was effective in factoring out the effect of 
distance in MLPE models and reduced the likelihood of type I error 
in estimating landscape resistance variable significance. Therefore, 
we also included an IBD fixed effect to all candidate models to im‐
prove accuracy of beta coefficient estimates. We calculated upper 
and lower 95% confidence intervals (CIs) of beta coefficients for all 
variables in REML‐refitted candidate models. Model averaging of 
variable beta coefficients was conducted for each population using 
BIC evidence weights. Variables that had positive beta coefficients 
with CIs that did not overlap zero were considered to have a sig‐
nificant effect. Using this approach, landscape resistance variables 
with significant negative beta coefficients typically indicate a non‐
true relationship (Row et al., 2017) and were thus interpreted here 
as nonsignificant.

3  | RESULTS

3.1 | Genotyping and data filtering

Minimal variation in SNP numbers and error rates (locus, allele, and 
SNP) was observed among replicate samples due to changes in the 
denovo _ map.pl parameter settings. Nonetheless, optimal parameter 
settings were chosen according to these measures, resulting in an 
average locus error rates of 0.289, an average allele error rate of 
0.066, and an average SNP error rate of 0.027 prior to filtering of 
the SNP matrix. Initial processing of raw sequencing data in Stacks 
using optimal parameter settings resulted in a matrix of 141,705 
SNPs among 286 individuals. Following filtering of individuals and 
loci for missing data, and of loci for low minor allele frequencies, 
outlier loci, and exclusion of SNPs at read positions 94 and 95, a final 
matrix of 13,520 SNPs among 271 individuals remained for analysis 

of population genomic structure (see Table S1.1 for detailed filtering 
results).

3.2 | Population genomics

Analyses of population genomic structure using faststructure in‐
dicated distinct genetic clusters northwest and southeast of Los 
Angeles, which were further structured with respect to certain 
major roads. For the northwest of LA group (Figure 1a), K  =  2–3 
was identified as optimal, with cross‐validation error being lowest 
at K = 3 (Figure 2a). We chose K = 3 as the most plausible number of 
genetic clusters based on these results and because the identified 
populations and subsequent individual assignment probabilities cor‐
responded spatially with major geographical features (i.e., highways). 
These results indicated one genetic population located north of 
California State Highway 101 (this population subsequently referred 
to here as North‐101), and two other populations that were both lo‐
cated south of Highway 101: one west of Interstate 405 (South‐101) 
and one east of Interstate 405 (East‐405).

For the southeast of LA group (Figure 1b,c), K = 1–3 was iden‐
tified as optimal, with cross‐validation error being lowest at K = 4 
(Figure 2b). These analyses had difficulty consistently resolving spa‐
tial genetic groups in this region, with the only repeated delineation 
being among individuals sampled east and west of Interstate 5 (I‐5). 
Within these two groups, some substructure was identified, but not 
consistently among runs at different K values. Thus, we determined 
that the southeast of LA group contained two genetic populations 
separated by I‐5. These two clusters consisted of individuals sam‐
pled from the San Joaquin Hills area west of I‐5 (this population and 
the area it occupies are subsequently referred to as West‐5), and one 
population east of I‐5 (East‐5) consisting of individuals across a large 
area in the Santa Ana Mountains south of Los Angeles and north 
of San Diego (Figure 1b). For quantifying rates of migration and ad‐
mixture among West‐5 and East‐5, assignment probabilities for K = 3 
appeared to be most informative, so we identified among‐population 
migrants using this model. However, close scrutiny of K = 2 and K = 4 
revealed support for the same migrant individuals. Substructure 
within the West‐5 population detected with K = 3 did not appear to 
correspond to any spatial or temporal pattern. Substructure within 
East‐5 was detected only at K = 4, with clusters spatially organized 
in a roughly north‐to‐south pattern. However, these clusters over‐
lapped spatially and did not appear to correspond to any known geo‐
graphical barriers, potentially indicating a clinal pattern of genetic 
variation (Figures S1.1, and Figures S1.2) driven by isolation‐by‐re‐
sistance relationships (please see Appendix S2 for an additional anal‐
ysis that corroborates our faststructure findings).

We detected 21 migrant individuals across the study area 
using faststructure. These included 12 individuals located north of 
Highway 101 that genetically assigned to the South‐101 population. 
A high proportion of individuals north of Highway 101 and west of 
Highway 23 had mixed ancestry (North‐101, South‐101 populations) 
and therefore the population assignment of this area is uncertain 
and was excluded from further study. The South‐101 population 
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area contained one individual that assigned to the North‐101 popu‐
lation, and two individuals that assigned to East‐405. The East‐405 
population area contained two individuals that assigned to the 
South‐101 population. We identified less migration among the two 
populations located southeast of Los Angeles, with one individual 
located east of Interstate 5 assigned to West‐5, and three individu‐
als located west of I‐5 assigned to East‐5. Pairwise FST values were 
statistically significant among all populations and ranged between 
0.041 and 0.150 (Table 3), supporting the genetic clusters identified 
using faststructure.

Population East‐405 was the least genetically diverse based 
on allelic richness and nucleotide diversity, with these measures 
also relatively low in West‐5 (Table 4). East‐5 and South‐101 had 
the highest measures of allelic richness and nucleotide diversity 
but were also the largest populations based on geographic area. 
Effective population sizes were generally congruent with the ge‐
netic diversity measures, with populations with higher genetic 
diversity having higher effective population sizes (Table 4; for a 
detailed discussion of our population genomics findings, please 
see Appendix S3).

3.3 | Landscape genomics

Geographic extent and landscape composition varied among pop‐
ulations (Table 5). The population with the largest area was East‐5 
(15,067 km2), with all other populations below 1,000 km2. East‐5 was 
also the least urbanized and had the fewest roads, with the highest 
degrees of urbanization and road density being in populations with 
the smallest spatial size, East‐405 and West‐5. Stream density was 
relatively consistent among populations, except for East‐405 which 
had comparatively few streams. Topographic roughness was highest 

in the South‐101 population, which encompassed the Santa Monica 
Mountains, and was lowest in West‐5.

No collinearity was detected among predictors, except among 
the resistance distances for impervious surfaces and roads in the 
East‐405 population; we thus excluded impervious surfaces from 
all multivariable models for East‐405 (although we retained it for 
the single‐variable model). For the study‐wide landscape resistance 
analysis, linear mixed effects models with MLPE returned only 
the full model as a candidate for the best model according to BIC 
(Table 6). Within this model, we found significant effects of topo‐
graphic roughness and impervious surfaces with roughness pos‐
itively associated and impervious surfaces negatively associated 
with gene flow, but no significant effect of IBD, vegetation, roads, 
or streams (Table 6, Figure 3). The population inhabiting the largest 
area, East‐5, showed significant effects of vegetation, impervious 
surfaces, and streams, but no effect of IBD, indicating that vege‐
tation and streams were positively associated with gene flow, and 
impervious surfaces were negatively associated with gene flow.

Among the spatially smaller populations, generally fewer sig‐
nificant landscape effects on genetic distances were identified. 
We found strong effects of impervious surfaces on gene flow in 
both South‐101 and East‐405, which had relatively low densities 
of streams (Figure 4). Conversely, populations exhibiting evidence 
for streams being positively associated with gene flow (East‐5, 
South‐101, and North‐101) had generally lower urbanization and 
road density and had larger areas (Figure 4). However, two of these 
populations showed only near‐significant support for streams 
(South‐101 and North‐101; Figures 3 and 4). There was near‐sig‐
nificant support for a negative effect of roads on gene flow in 
North‐101 and South‐101 (Figure 3). IBD was the only supported 
predictor of pairwise genetic distances in West‐5. Marginal R2 values 

TA B L E  3   Pairwise FST among each population pair (95% confidence intervals shown in parentheses), indicating varying degrees of genetic 
differentiation among populations

  East−5 West−5 East−405 South−101

West‐5 0.040 (0.031–0.049) – – –

East‐405 0.087 (0.076–0.106) 0.123 (0.103–0.145) – –

South‐101 0.039 (0.034–0.044) 0.073 (0.064–0.083) 0.058 (0.046–0.074) –

North‐101 0.049 (0.043–0.056) 0.085 (0.076–0.095) 0.091 (0.082–0.122) 0.035 (0.028–0.044)

TA B L E  4   Genetic diversity statistics for each population with the number of genotyped individuals used for calculating these statistics 
(n), allelic richness (Ar), observed heterozygosity (Hobs), expected heterozygosity (Hexp), inbreeding coefficient (Fis), and effective population 
size (Ne; calculated with nonmigrants only). The greatest genetic diversity and effective population sizes were observed in East‐5 and 
South‐101, while East‐405 contained the lowest diversity and smallest effective population size

Population n Ar Hobs Hexp Fis Ne

North‐101 61 1.75 0.1533 0.1902 0.1693 22.9 (16.4–33.6)

South‐101 43 1.79 0.1640 0.1940 0.1252 90.3 (46.3–504.2)

East‐405 26 1.62 0.1408 0.1679 0.1300 12.8 (6–35.1)

West‐5 44 1.71 0.1624 0.1854 0.1132 18.9 (14.4–25.5)

East‐5 97 1.83 0.1513 0.1963 0.2069 150.3 (100.5–271.8)
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were highest in the study‐wide candidate model (mR2  =  0.640; 
Table 6), East‐5 (mR2  =  0.318) and in East‐405 (mR2  =  0.269), and 
lowest in North‐101 (mR2  =  0.053–0.124), indicating substantial 
variation among populations in the ability of our models to explain 
individual genetic variation.

4  | DISCUSSION

4.1 | Effect of spatial scale on landscape genetic 
inference

Understanding how landscape features influence connectivity 
within and among populations, and hence at varying spatial scales, 
is important for identifying factors that maintain connectivity and 
to elucidate the impacts of habitat degradation on genetic varia‐
tion (Johnson & Munshi‐South, 2017; Miles et al., 2018; Rivkin et 
al., 2019). In most of our studied populations, a proportion of the 
variation in genetic distances among individuals was attributable 
to one or more of our landscape resistance hypotheses. However, 
the spatial scale over which these hypotheses were tested ap‐
peared to be an important factor, with greater proportions of 
genetic variation explained by our models at larger spatial scales 
(64% study‐wide; 32% in the largest population; compared to gen‐
erally <13% in smaller populations). The ratio of dispersal distance 
to study area has a substantial influence on the proportion of spa‐
tial genetic structure that is likely to be explained by landscape 
heterogeneity, with a greater proportion of variation explained 
when this ratio is lower. This is because species that disperse long 
distances exhibit spatial genetic variation over larger areas than 
those that disperse short distances. Thus, sampling over larger 
areas is required in order to detect patterns of variation in long‐
distance dispersers that reflect landscape effects. For example, in 
studies of species with very low dispersal distances compared to 
bobcats, landscape genetic models can explain upwards of 40% 
of genetic structure across study areas comparable in size to our 
smaller populations (Funk et al., 2005; Goldberg & Waits, 2010; 
Murphy, Evans, & Storfer, 2010; Vandergast et al., 2007; Wang, 
2009).

We found strong support for models containing multiple signif‐
icant effects of landscape variables in both the study‐wide analysis 
and East‐5. In contrast, we observed fewer effects of landscape re‐
sistance in the four populations with the smallest spatial size. Strong 
support for impervious surfaces restricting gene flow was evident 
in South‐101 and East‐405, but West‐5 showed no support for any 
resistance hypothesis other than IBD, and there was only minimal 
statistical support for any resistance hypothesis in North‐101. Our 
findings reflect those of other recent landscape genetic studies em‐
ploying replicate populations or landscapes that demonstrate the 
scale dependency of many landscape genetic relationships (Balbi et 
al., 2018; Miles et al., 2018; Robertson et al., 2018; Row et al., 2018). 
Sample size did not appear to be a major factor affecting inferential 
power among our populations. Although we found higher support 
across larger spatial areas for landscape factors influencing gene 
flow, the smaller areas to which some populations were confined did 
not preclude us from detecting landscape genetic signals where con‐
nectivity was strongly impacted.

For the spatial scales at which habitat fragmentation is occur‐
ring in coastal southern California, bobcat populations are excel‐
lent indicators of functional connectivity (Crooks, 2002; Hunter 
et al., 2003). This is largely due to their intermediate sensitivity to 
anthropogenic disturbance and reliance on large, connected areas 
of natural habitat (Crooks, 2002; Ordeñana et al., 2010). Hard bar‐
riers such as highways or tracts of urban development can have a 
substantial and highly detectable effect on bobcat gene flow (Lee 
et al., 2012; Riley et al., 2006; Serieys et al., 2015; Thomassen et 
al., 2018). An effect of spatial scale on the detectability of environ‐
mentally‐associated genetic variation has already been proposed 
in this region (Thomassen et al., 2018). However, by enhancing 
the detectability of this variation through high‐resolution genomic 
data and landscape resistance analyses and by comparing across 
multiple spatial scales through multiple replicated analyses, our 
study provides further insights into the role of scale dependency 
in landscape genetic relationships. Within fully natural or altered 
natural areas, the high vagility and generalized habitat use of bob‐
cats (Ordeñana et al., 2010; Riley, Boydston, Crooks, & Lyren, 2010) 
means that the effects of specific landscape factors on functional 

TA B L E  5   Landscape characteristics for each genetic population ± standard deviation, indicating substantial variation among populations. 
Linear features (roads and streams) are given as average length of features per square kilometer, with all other features given as the average 
raster cell value across the population area. Urbanization (impervious surface) are actual percentage values (i.e., 100% urbanization means 
that the impervious surfaces cover 100% of a raster cell), while vegetation density and topographic roughness are percentages relative to 
the highest and lowest values of each variable across the whole region

Population
Total area 
(km2)

Vegetation 
density (%) Urbanization (%) Roads (km/km2) Streams (km/km2)

Topographic 
roughness (%) Elevation (m)

North‐101 406 38.2 ± 7.27 16.9 ± 23.0 5.55 1.57 2.35 ± 2.49 348 ± 100

South‐101 959 49.3 ± 12.2 9.45 ± 19.1 3.60 1.53 3.74 ± 4.01 280 ± 174

East‐405 185 47.1 ± 11.5 28.8 ± 29.1 9.41 0.53 2.93 ± 3.37 225 ± 89.6

West‐5 340 43.4 ± 10.2 27.7 ± 27.8 9.22 1.97 1.83 ± 2.11 98.1 ± 67.7

East‐5a 15,067 38.4 ± 15.9 6.68 ± 17.5 2.43 1.52 2.62 ± 3.20 632 ± 445

aLandscape characteristics for this population are estimates only as it has a high degree of openness to external source populations without a clearly 
defined geographical boundary (e.g., major highways known to be acting as barriers). 
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TA B L E  6   Linear mixed effect modelling with maximum‐likelihood population effects indicates significant effects of landscape resistance 
variables on gene flow within genetic populations as well as across the entire region. Candidate models are listed according to ΔBIC (up 
to a maximum of five) calculated from initial fitting of models without restricted maximum likelihood (REML) and without the isolation by 
distance (IBD) fixed effect. Variance inflation factors (VIF) and marginal R2 values reported are from these initial models. 95% confidence 
intervals for parameter beta coefficients (β) were calculated from refitting of candidate models with REML and IBD fixed effect included for 
enhanced accuracy and reduction of type I error. See Table 2 for model and parameter descriptions

Population Candidate models ΔBIC mR2 Parameter β

95% CI

VIFLower Upper

Region FULL 0.00 0.64 Intercept 0.001 −0.385 0.387  

IBD −0.300 −0.557 −0.043  

ROUGHa 0.923 0.675 1.172 6.07

VEG −0.219 −0.334 −0.103 2.88

IMPERVa 2.333 2.172 2.493 2.90

ROAD −0.223 −0.404 −0.042 4.96

STREAM −0.435 −0.568 −0.302 3.48

North−101 UNIV.ROAD 0.00 0.058 Intercept 0.004 −0.236 0.244  

IBD 0.021 −0.188 0.231  

ROAD 0.201 −0.009 0.411  

UNIV.TR 2.62 0.066 Intercept 0.005 −0.253 0.262  

IBD 0.059 −0.290 0.407  

ROUGH 0.177 −0.210 0.565  

IBD 3.31 0.053 Intercept 0.005 −0.250 0.260  

IBDa 0.216 0.161 0.272  

UNIV.STRM 4.37 0.124 Intercept 0.005 −0.243 0.253  

IBD 0.124 −0.012 0.260  

STREAM 0.162 −0.057 0.380  

LINEAR 4.72 0.068 Intercept 0.004 −0.225 0.233  

IBD −0.097 −0.335 0.141  

ROADa 0.218 0.013 0.423 1.25

STREAM 0.177 −0.026 0.380 1.25

South−101 UNIV.IMP 0.00 0.075 Intercept 0.001 −0.371 0.374  

IBD −0.275 −0.666 0.117  

IMPERVa 0.514 0.116 0.913  

UNIV.RD 1.30 0.113 Intercept 0.001 −0.358 0.360  

IBD 0.006 −0.245 0.256  

ROAD 0.292 −0.033 0.616  

UNIV.STRM 1.34 0.084 Intercept 0.000 −0.346 0.346  

IBD −0.140 −0.552 0.273  

STREAM 0.396 −0.047 0.839  

UNIV.TR 3.18 0.078 Intercept 0.001 −0.358 0.359  

IBD −0.228 −0.992 0.535  

ROUGH 0.481 −0.325 1.286  

IBD 3.96 0.071 Intercept 0.001 −0.336 0.337  

IBDa 0.226 0.177 0.275  

East−405 UNIV.IMP 0.00 0.269 Intercept 0.006 −0.368 0.380  

IBD −0.635 −1.062 −0.208  

IMPERVa 1.090 0.664 1.515  

(Continues)
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connectivity are often subtle. Thus, their detectability remains in‐
fluenced by spatial scale, even with the high precision afforded by 
large genomic data sets.

4.2 | Implications for functional connectivity

Urban development containing impervious surfaces was the most 
frequently identified factor impacting connectivity, having a nega‐
tive effect on gene flow largely irrespective of spatial scale or overall 
urban density. While bobcats generally occur more often in natural 
areas (Ordeñana et al., 2010), some telemetry studies show that bob‐
cats will cross and sometimes utilize urban development separating 
habitat fragments, particularly at night (Riley et al., 2003; Tigas et al., 
2002). Our results indicate that despite these movements, urban de‐
velopment does constrain gene flow even within areas that consist 
largely of natural habitat (e.g., East‐5, South‐101). The strongest effect 
of impervious surfaces appeared to be within our study‐wide analy‐
sis, and due to urban development and major highways constraining 
gene flow among populations. At this broad scale, bobcat gene flow 
also favoured areas that were topographically rough, probably in part 
because such terrain precludes intensive urban development. This 
pattern is obvious in coastal southern California, where the largest 
tracts of urban development are situated in the flat regions of the 
Los Angeles Basin, coastal Orange County, and the coastal plain of 
San Diego County, and bobcat habitat generally is restricted to the 
surrounding Santa Monica Mountains, San Joaquin Hills, and east‐
ern Peninsular Ranges. However, bobcats have been shown to also 
favour topographically rough terrain in less urbanized landscapes 
(Abouelezz et al., 2018). The ability to identify generalized effects 
such as that of urbanization here is a key advantage afforded by rep‐
lication in landscape genetics generally (Balbi et al., 2018; Robertson 
et al., 2018; Row et al., 2018). However, where results differ among 
populations, a replicated design also provides an opportunity to ex‐
plore what localized factors may have led to these differences.

Although we observed the effects of impervious surfaces in 
populations surrounded by relatively low urban development, we 
did not observe this pattern in some populations with moderate and 
high amounts of urban development (North‐101 and West‐5). As we 
outlined above, a lack of effect in these populations may be due to 

low detectability of landscape genetic signals at small spatial scales; 
however, variation among populations in dispersal behavior may be a 
contributing factor as well. Studies in other regions with different pat‐
terns of urban development have found that bobcats more strongly 
avoid urban areas in landscapes that are less fragmented by urban‐
ization overall (Riley, 2006). In coastal southern California, bobcats 
in areas with relatively broad tracts of natural habitat may be better 
able to avoid urban areas through greater availability of alternative 
routes. Additionally, a home‐range pileup effect has been observed 
previously in this region whereby territories adjacent to urban and 
highway barriers tend to be smaller and more densely distributed 
(Riley et al., 2006). As a result, juveniles from more urbanized areas 
may be required to disperse greater distances through potentially 
less suitable habitat (e.g. areas containing more impervious surface) 
to find territory. Nonetheless, a strong negative effect of impervious 
surfaces on gene flow was detected in our smallest and most heavily 
urbanized population (East‐405). For such a small patch of habitat, it 
is concerning that the effect of impervious surfaces explained such a 
high proportion of the among‐individual genetic variation within this 
population (mR2 = 0.269). Further urban development in this area has 
a risk of producing smaller, more isolated habitat patches that may be 
insufficient to support viable bobcat populations, resulting in localized 
extinction. The area east of I‐405 no longer supports a viable popula‐
tion of mountain lions due to urban habitat fragmentation (Riley et al., 
2014), and our results suggest that bobcats are at risk of a similar fate.

In urban populations, the landscape factors that are responsi‐
ble for maintaining gene flow are often poorly understood, despite 
their identification being critical for effective management of urban 
wildlife populations (Rivkin et al., 2019). Streams and vegetation 
had significant effects on gene flow only in East‐5, our largest and 
least urbanized population. Vegetation is frequently found to favour 
bobcat movement and space use throughout the species' range 
(Abouelezz et al., 2018; Reding, Cushman, Gosselink, & Clark, 2013; 
Tucker, Clark, & Gosselink, 2008). In particular, the lack of an effect 
of vegetation in our more urbanized populations contrasts with a 
study of bobcats in Vermont, USA, which found that movement 
through vegetated areas is faster when in proximity to urban devel‐
opment compared to when the surrounding area was also vegetated 
(Abouelezz et al., 2018).

Population Candidate models ΔBIC mR2 Parameter β

95% CI

VIFLower Upper

West−5 IBD 0.00 0.125 Intercept 0.001 −0.258 0.260  

IBDa 0.345 0.265 0.425  

East−5 HABITAT 0.00 0.318 Intercept 0.000 −0.249 0.248  

IBD −0.069 −0.219 0.082  

VEGa 0.348 0.199 0.498 1.29

IMPERVa 0.209 0.038 0.379 1.11

STREAMa 0.294 0.124 0.463 1.35

*Indicates parameter significance, as determined by 95% confidence intervals greater than and not overlapping zero. 

TA B L E  6   (Continued)
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In San Diego County, which encompasses a substantial part of our 
East‐5 population, previous work has found associations between 
bobcat occurrence and water availability (Markovchick‐Nicholls et 

al., 2008), as well as evidence for stream use as dispersal corridors 
(Jennings & Zeller, 2017). In addition, telemetry has indicated bob‐
cats in the San Joaquin Hills utilize riparian corridors, particularly as 

F I G U R E  3   Average coefficients from MLPE candidate models indicate significant effects of landscape resistance variables on individual 
pairwise genetic distances among bobcats within five separate populations in coastal southern California, as well as among all individuals 
across the region. Mean coefficients are shown with upper and lower confidence intervals, weighted according to BIC model support. IBD, 
isolation by distance; IMPERV, impervious surfaces; ROAD, roads (major and minor) and highway links; ROUGH, topographic roughness; 
STREAM, all ephemeral, intermittent and perennial surface waterways; VEG, vegetation density
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F I G U R E  4   Trends in average beta coefficients for the effects of resistance distances representing impervious surfaces (a–d) and 
streams (e–h) on individual pairwise genetic distances in each population, relative to landscape characteristics of the area inhabited by 
each population. The effect of impervious surfaces on connectivity is generally greater in populations with fewer streams, while the effect 
of streams on connectivity is generally greater in populations encompassing a larger spatial area with lower urbanization and lower road 
density. Vertical error bars represent 95% confidence intervals; horizontal error bars represent ± 1 standard deviation. Colours indicate 
study population, with East‐405 shown in blue, South‐101 shown in red, North‐101 shown in yellow, East‐5 shown in orange, and West‐5 
shown in green. Comparisons between all combinations of resistance distance coefficients and population area characteristics are shown in 
Figure S1.3 [Colour figure can be viewed at wileyonlinelibrary.com]
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a means of traversing roads and urban areas (Lyren et al., 2008b), 
while camera surveys indicate bobcat use of riparian corridors in 
agricultural areas in northern California (Hilty & Merenlender, 
2004). In contrast, our results suggest no overall effect of streams 
on gene flow in our San Joaquin Hills population (West‐5), nor in 
East‐405, our most heavily urbanized population. Again, such an 
effect may not be detectable at the relatively small spatial scales 
of these populations, and indeed, there was a weakly supported 
positive effect of streams in North‐101 and South‐101. Populations 
experiencing less urbanization and fewer roads appeared more 
likely to exhibit a positive effect of streams on gene flow (East‐5 
and South‐101), while the strongest negative effect of urbanization 
on gene flow was in the population containing the fewest streams 
(East‐405). One potential consequence of urbanization is the diver‐
sion of surface streams into channels and pipelines. This is partic‐
ularly evident in the East‐405 population, where the lower areas 
of many catchments contain suburban development with pipelines 
running underneath. The resulting loss of streams as usable habitat 
may explain why East‐405 exhibited the highest effect of impervi‐
ous surface in constraining gene flow (along with no positive effect 
of streams on gene flow).

In conclusion, our study demonstrates the value of multiple 
study areas and spatial scales when investigating the effects of 
landscape features on functional connectivity. Although our repli‐
cated design allowed us to draw generalized conclusions about the 
influence of specific landscape factors on gene flow (e.g., that of 
urbanization), no single factor had the same effect across all popu‐
lations. This variability highlights the potential for single‐population 
landscape genetic studies to miss important effects or overstate 
the generality of their findings. Further, variation among popula‐
tions in landscape genetic relationships enables interpretation of 
these relationships with respect to variation in other underlying 
factors. Therefore, replication across populations and landscapes 
should be conducted wherever possible to properly assess the gen‐
erality of landscape genetic effects and their dependence on spatial 
scale and landscape context.
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